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With the help of complete orthonormal sets of �α- ETOs, where α= 1, 0,−1,−2, . . .

a large number of series expansion formulas for the multicenter electronic attraction
(EA), electric field (EF) and electric field gradient (EFG) integrals of integer and non-
integer n Slater type orbitals (ISTOs and NISTOs) is established through the overlap
integrals with the same screening constants and the new central and noncentral interac-
tion potentials depending on the coordinates of the nuclei of a molecule are introduced.
The convergence of the series is tested by calculating concrete cases for arbitrary quan-
tum numbers, screening constants and location of ISTOs and NISTOs.

KEY WORDS: electronic attraction integrals, electric field integrals, electric field gra-
dient integrals, noninteger principal quantum numbers

1. Introduction

It is well known that the vast majority of all molecular electronic structure
calculations are nowadays performed on the basis of the Hartree-Fock-Roothaan
(HFR) equations [1] combined with the so-called LCAO MO approach. In this
approach, the multi-electron wave functions are approximated by linear combi-
nations of suitably symmetrized products of one-electron wave functions (Slater
determinants), and the spatial part of such a one-electron wave function is
approximated by a linear combination of so-called basis functions centered at
the nuclei of the different atoms of the molecule. The HFR approach inevita-
bly leads to the so-called molecular multicenter integrals one- and two-electron
integrals whose numerical values are needed in the subsequent iterative solution
of the HFR equations. Unfortunately, even today and in spite of all the recent
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progress in mathematical techniques and in computer hard- and software, this
integral problem of computational quantum chemistry is not yet solved in a
completely satisfactory way.

The computational problems, which have to be overcome, depend strongly
on the basis functions being used. The stater type orbitals (STOs) are the first
basis functions, were used on a larger scale in atomic calculations [2]. These
functions are able to describe correctly the asymptotic behavior of exact solu-
tions of atomic and molecular Schrödinger equation both in the vicinity of the
nuclei [3] or at large distances away from the nuclei [4]. Accordingly, the STOs
are apparently very close to physical reality. Nevertheless, STOs nowadays play
a negligible role in ab initio calculations. The reason is that so far, nobody has
been able to compute the multicenter integrals at the same time efficiently and
reliable. This would be necessary to make molecular electronic structure calcu-
lations with a Slater basis feasible. Instead, ab initio calculations are routinely
performed with the help of Gaussian functions, as proposed by Boys [5]. These
functions have many obvious disadvantages. In particular, they are nonphysical
in that sense that they are not able to describe correctly the asymptotic behav-
ior of exact molecular wave functions either in the vicinity of the nuclei [3] or
at large distances away from the nuclei [4]. Consequently, relatively large basis
sets of Gaussian functions are needed to compensate their nonphysical nature
and to accomplish a satisfactory accuracy. In particular, for the investigation
of the derivatives of the electrostatic potential created by the electrons and the
interactions between electrons and nuclei of a molecule, the slow convergence
of Gaussian functions may lead to serious computational problems. The only,
but nevertheless decisive advantage of Gaussian functions is that their molecu-
lar multicenter integrals can be computed comparatively easily.

In principle, it is quite obvious how to overcome the inherent limitations
of Gaussian basis functions. One only has to use alternative basis functions that
are physically better motivated. As explained above, exponentially decaying basis
functions like STOs are the most natural candidates: many test calculations have
shown that already relatively small basis of STOs suffice to produce a good accu-
racy.

Recently, we have had some encouraging developments in this direction.
With the help of complete orthonormal sets of �α-ETOs [6–8], we could show
that the arbitrary multicenter multielectron molecular integrals of ISTOs and
NISTOs arising in the determination of various multielectron properties for a
given molecule can be computed both efficiently and reliable. The convergence,
accuracy and CPU time have been tested in our previous papers (see: figures
and tables in refs. 9–13) by calculating different kinds of one and two-elec-
tron multicenter integrals over ISTOs and NISTOs. We notice that these inte-
grals are expressed in terms of two-center overlap integrals for the calculation
of which efficient computer programs especially useful for large quantum num-
bers are available in our group. Therefore, by using the computer programs for
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the overlap integrals, one can calculate the multicenter integrals over ISTOs and
NISTOs appearing in the determination of molecular multielectron properties
when the HFR approximation is employed.

In this paper, we wish, using our treatment of the expansion problem for
STOs based upon the complete orthonormal sets of �α-ETOs, to establish the
combined formulas for the multicenter EA, EF and EFG integrals of STOs with
integer and noninteger principal quantum numbers. We notice that the method
used in this work is an extension of the approach presented in refs. 14 and 15
for ISTOs to the case of NISTOs. The new and older works are reviewed in ref.
15.

2. Definitions and basic formulas

In order to evaluate the multicenter integrals of Coulomb potential appear-
ing in the study of electric field induced within a molecule by its electrons, the
following integrals must be solved:

multicenter EA integrals

Upp′(ζ, ζ ′; �Rca,
�Rab) =

∫
χ∗p(ζ, �ra1)χp′(ζ

′, �rc1)O(rb1)dV1, (1)

multicenter EF integrals,

Ui
pp′(ζ, ζ ′; �Rca,

�Rab) =
∫

χ∗p(ζ, �ra1)χp′(ζ
′, �rc1)O

i(�rb1)dV1 (2a)

= ∂

∂Xi
Upp′(ζ, ζ ′; �Rca,

�Rab), (2b)

multicenter EFG integrals,

U
ij

pp′(ζ, ζ ′; �Rca,
�Rab) =

∫
χ∗p(ζ, �ra1)χp′(ζ

′, �rc1)O
ij (�rb1)dV1 (3a)

= ∂2

∂Xi∂Xj
Upp′(ζ, ζ ′; �Rca, �Rab), (3b)

where i, j = 1,−1, 0, p ≡ nlm, p′ ≡ n′l′m′, �Rca = �rc1 − �ra1,
�Rab = �ra1 − �rb1,n and

n′ are the integer or noninteger principal quantum numbers and

O(rb1) = 1
rb1

, (4)

Oi(�rb1) = ∂

∂Xi
O(�rb1) =

xi
b1

r3
b1

, (5)

Oij (�rb1) = ∂2

∂Xi∂Xj
O(�rb1) =

3xi
b1x

j

b1 − δij r
2
b1

r5
b1

− 4π

3
δij δ(�rb1). (6)
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Here x1 = x, x−1 = y, x0 = z and X1 = X, X−1 = Y, X0 = Z are the Cartesian
coordinates of the electron and nucleus b, respectively; δ(�r) is the Dirac delta
function. The normalized complex or real STOs in equations (1), (2a) and (3a)
are determined by

χnlm(ζ, �r) = Rn(ζ, r)Slm(θ, ϕ), (7)

Rn(ζ, r) = (2ζ )n+1/2[
(2n+ 1)]−1/2rn−1e−ζ r , (8)

where ζ is the screening constant and 
(n) is the gamma function defined by [16]


(n) =
∫ ∞

0
tn−1e−tdt. (9)

The Coulomb potential O(rb1), equation (4), satisfies the Poisson’s equation [17]:

O11(�r)+O−1−1(�r)+O00(�r) =
(

∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
O(r) = −4πδ(�r). (10)

3. Expressions in terms of basic integrals

In order to evaluate the multicenter EA, EF and EFG integrals, equations
(1)–(3), we first make use of the following expansion formulas for the electron
charge density over NISTOs in terms of ISTOs [7]:

χp(ζ, �ra1)χ
∗
p′(ζ

′, �rc1) = 1√
4π

lim
N→∞

N∑
µ=1

µ−1∑
ν=0

ν∑
σ=−ν

WαN
pp′q(ζ, ζ ′, z; �Rca,

�Rab)χq(z, �rb1),

(11)

χp(ζ, �ra1)χ
∗
p′(ζ

′, �rc1) = 1√
4π

lim
N→∞

N∑
µ=1

µ−1∑
ν=0

ν∑
σ=−ν

WαN
pp′q(ζ, ζ ′, z; �Rca,0)χq(z, �ra1),

(12)

where α= 1, 0,−1,−2, . . . , q ≡µνσ and z= ζ +ζ ′. The quantities WαN
pp′q(ζ, ζ ′, z;

�Rca,
�Rab) and WαN

pp′q(ζ, ζ ′, z; �Rca,0) are the three- and two-center charge density
expansion coefficients determined by the use of two-center overlap integrals
between ISTOs and NISTOs with the same screening constants.

Substituting in equations (1)–(3) the charge densities χp(ζ, �ra1)χ
∗
p′(ζ

′, �rc1) by
their expressions, namely, equations (11) and (12), we get the following relations
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in terms of one- and two-center basic integrals over ISTOs:

Upp′(ζ,ζ ′; �Rca,
�Rab)= 1√

4π
lim

N→∞

N∑
µ=1

µ−1∑
ν=0

ν∑
σ=−ν

WαN
pp′q(ζ,ζ ′,z; �Rca,

�Rab)Jq(z), (13)

Ui
pp′(ζ,ζ ′; �Rca,

�Rab)= 1√
4π

lim
N→∞

N∑
µ=1

µ−1∑
ν=0

ν∑
σ=−ν

WαN
pp′q(ζ,ζ ′,z; �Rca,

�Rab)J
i
q(z), (14)

U
ij

pp′(ζ,ζ ′; �Rca, �Rab)= 1√
4π

lim
N→∞

N∑
µ=1

µ−1∑
ν=0

ν∑
σ=−ν

WαN
pp′q(ζ,ζ ′,z; �Rca,

�Rab)J
ij
q (z), (15)

and

Upp′(ζ,ζ ′; �Rca,
�Rab)= 1√

4π
lim

N→∞

N∑
µ=1

µ−1∑
ν=0

ν∑
σ=−ν

WαN
pp′q(ζ,ζ ′,z; �Rca,0)Jq(z, �Rab), (16)

Ui
pp′(ζ,ζ ′; �Rca,

�Rab)= 1√
4π

lim
N→∞

N∑
µ=1

µ−1∑
ν=0

ν∑
σ=−ν

WαN
pp′q(ζ,ζ ′,z; �Rca,0)J i

q(z,
�Rab), (17)

U
ij

pp′(ζ,ζ ′; �Rca,
�Rab)= 1√

4π
lim

N→∞

N∑
µ=1

µ−1∑
ν=0

ν∑
σ=−ν

WαN
pp′q(ζ,ζ ′,z; �Rca,0)J ij

q (z, �Rab).

(18)

The basic integrals in these equations are determined by
one-center integrals

Jq(z) = 1√
4π

∫
χ∗q (z, �r1)O(r1)dV1, (19)

J i
q(z) =

1√
4π

∫
χ∗q (z, �r1)O

i(�r1)dV1, (20)

J ij
q (z) = 1√

4π

∫
χ∗q (z, �r1)O

ij (�r1)dV1 (21)

and
two-center integrals

Jq(z; �R) = 1√
4π

∫
χ∗q (z, �ra1)O(rb1)dV1, (22)

J i
q(z; �R) = 1√

4π

∫
χ∗q (z, �ra1)O

i(�rb1)dV1 (23a)

= ∂

∂Xi
Jq(z; �R), (23b)
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J ij
q (z; �R) = 1√

4π

∫
χ∗q (z, �ra1)O

ij (�rb1)dV1 (24a)

= ∂2

∂Xi∂Xj
Jq(z; �R), (24b)

where Jq(z) = Jq(z, 0), J i
q(z) = J i

q(z, 0), J
ij
q (z) = J

ij
q (z, 0) and �R = �Rab. Thus, the

multicenter EA, EF and EFG integrals over ISTOs and NISTOs can be calcu-
lated with the help of one- or two-center basic integrals of ISTOs.

4. Use of central and noncentral potential functions in evaluation of basic
integrals

In order to evaluate the one-center basic integrals we take into account
equations (4)–(6) for operators in equations (19)–(21). Then we find finally for
the one-center basic integrals the following relations:

Jµνσ (z) = 2µ+1
(µ+ 1)√

(2µ+ 1)

(2z)−1/2δν0δσ0, (25)

J i
µνσ (z) = 2µ
(µ)√

3
(2µ+ 1)
(2z)1/2δν1δσi, (26)

J
ij

nlm(ζ ) = 2µ−1
(µ− 1)√
5
(2µ+ 1)

(2z)3/2a
ij

2σ,0δν2 −
√

2
6

(2z)3/2δij δµ1δν0δσ0, (27)

where

a
ij

2σ,0 = 5C2|σ |(1i, 1j)Aσ
ij . (28)

See refs. 15 and 21 for exact definition of coefficients aij , Aσ and Cν|σ |, respec-
tively.

Now we move on the evaluation of two-center basic integrals. For this pur-
pose we use equations (25) and (26) of ref 12 for the two-center basic EA inte-
grals in equations (22), (23b) and (24b). Then with the aid of the method set
out in ref. 15 we find for the two-center basic integrals the following analytical
expressions in terms of potential functions:

Jµνσ (z, �R) = f 00
µν,νσ (z, �R), (28)

J i
µνσ (z, �R) =

ν−1∑
σ ′=−(ν−1)

ai
νσ,σ ′f

10
µν,ν−1σ ′(z,

�R)− (2ν + 1)

(
Xi

R

)
f 11

µν,νσ (z, �R), (29)

J ij
µνσ (z, �R) =

ν−2∑
σ ′=−(ν−2)

a
ij

νσ,σ ′f
20
µν,ν−2σ ′(z,

�R)− (2ν + 1)
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ν−1∑
σ ′=−(ν−1)

[
ai

νσ,σ ′

(
Xj

R

)
+ a

j

νσ,σ ′

(
Xi

R

)]
f 21

µν,ν−1σ ′(z, �R)

−(2ν + 1)δij f
21
µν,νσ (z, �R)+ (2ν + 1)(2ν + 3)

(
Xi

R

)(
Xj

R

)
f 22

µν,νσ (z, �R)−
√

4π

3
δijχ

∗
µνσ (z, �R).

(30)

The potential functions f tk
µν,υσ (z, �R) occurring in these equations are determined

by

f tk
µν,υσ (z, �R) = f tk

µν(z, R)S̄υσ (θ, ϕ), S̄υσ (θ, ϕ) =
√

4π

2υ + 1
Sυσ (θ, ϕ), (31)

f tk
µν(z, R) ≡ f tk

µν,00(z, R) = Nt
µν(2z)

xν+t+1

(
1− 1


(µ+ ν + 2)

k∑
σ=0

βtk
σ [
(µ+ ν + 2+ σ, x)

−x2ν+1
(µ− ν + 2+ σ, x)]

)
, (32)

where x = zR and t = 0, 1, 2 for EA, EF and EFG basic integrals, respectively,
0 � k � t ,

β00
0 = β10

0 = β20
0 = 1, β11

0 = β21
0 = −

µ− ν + 1
2ν + 1

, β11
1 = β21

1 =
1

2ν + 1
,

β22
0 =

(µ− ν + 1)(µ− ν − 1)

(2ν + 1)(2ν + 3)
,

β22
1 = −

2µ− 2ν + 1
(2ν + 1)(2ν + 3)

, β22
2 =

1
(2ν + 1)(2ν + 3)

and

Nt
µν(2z) = 2µ−t+1
(µ+ ν + 2)

[
(2z)2t−1

(2ν + 1)
(2µ+ 1)

]1/2

. (33)

Here 
(σ, x) is the incomplete gamma function defined by [16]


(σ, x) =
∫ ∞

x

tσ−1e−tdt . (34)

The accuracy of computer results for the multicenter EA, EF and EFG
integrals with NISTOs obtained from the analytical equations of this work can
also be determined by the use of the following different sets of one- center series
expansion formulas:

Unlm,n′l′m′(ζ,ζ ′; �Rca, �Rab)= lim
N→∞
N ′←∞

N∑
µ=l+1

N ′∑
µ′=l′+1

V αN∗
nl,µlV

αN ′
n′l′,µl′Uµlm,µ′l′m′(ζ,ζ ′; �Rca, �Rab),

(35)
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Ui
nlm,n′l′m′(ζ, ζ ′; �Rca,

�Rab) = lim
N→∞
N ′←∞

N∑
µ=l+1

N ′∑
µ′=l′+1

V αN∗
nl,µlV

αN ′
n′l′,µl′U

i
µlm,µ′l′m′(ζ, ζ ′; �Rca,

�Rab), (36)

U
ij

nlm,n′l′m′(ζ, ζ ′; �Rca, �Rab) = lim
N→∞
N ′←∞

N∑
µ=l+1

N ′∑
µ′=l′+1

V αN∗
nl,µlV

αN ′
n′l′,µl′U

ij

µlm,µ′l′m′(ζ, ζ ′; �Rca,
�Rab), (37)

where Uµlm,µ′l′m′(ζ, ζ ′; �Rca,
�Rab), Ui

µlm,µ′l′m′(ζ, ζ ′; �Rca,
�Rab) and U

ij

µlm,µ′l′m′(ζ, ζ ′; �Rca,

�Rab) are the multicenter EA, EF and EFG integrals with ISTOs and α =
1, 0,−1,−2, . . . . In ref. 15 we derived the analytical expressions for the multi-
center EA, EF and EFG integrals with ISTOs. Here the quantities V εN are the
one-center expansion coefficients for NISTOs in terms of ISTOs obtained with
the help of complete orthonormal sets of �α-ETOs (see ref. 6)

χn∗lm(ζ, �r) = lim
N→∞

N∑
n=l+1

V αN
n∗l,nlχnlm(ζ, �r), (38)

where

V αN
n∗l,nl =

N∑
n′=l+1

�αl
nn′(N)
(n∗ + n′ − α + 1)/

√

(2n∗ + 1)
(2n′ − 2α + 1), (39)

�αl
nκ (N) =

[
[2(k − α)]!

(2κ)!

]1/2 N∑
n′=max(n,κ)

(2n′)αωαl
n′nω

αl
n′κ , (40)

ωαl
nn′ = (−1)n

′−l−1

×
[

(n′ + l + 1)!
(2n)α(n′ + l + 1− α)!

Fn′+l+1−α(n+ l + 1− α)

×Fn′−l−1(n− l − 1)Fn′−l−1(2n′)
]1/2

. (41)

5. Numerical results and discussion

As can be seen from the formulas of this paper, the multicenter EA, EF and
EFG integrals with the integer and noninteger principal quantum numbers can
be calculated by the use of two-center overlap integrals with the same screen-
ing constant and potential function. For this purpose we need only the cartesian
coordinates of the nuclei of a molecule relative to a common axial frame and
the screening constants and quantum numbers of STOs. Thus, the computation
of different formulas for any multicenter EA, EF and EFG integral obtained by
the use of complete orthonormal sets of �1

nlm, �0
nlm, �−1

nlm, �−2
nlm, . . . ETOs can be

reduced to the calculation of overlap integrals and the potential containing the
incomplete gamma function. One has to be able to compute the overlap integrals
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and the incomplete gamma function with sufficient accuracy even for relatively
large summation indices because otherwise convergence cannot be obtained. The
numerical aspects of overlap integrals for large quantum numbers have recently
been investigated in our papers [12] and [19,20]. For the calculation of incom-
plete gamma function we used the computer program presented in ref. 21.

In figure 1, we present the convergence of the series, in equation (18)
forL = M < N − 1. Here N, L and M are upper limits of the indices µ, ν and
σ , respectively. The series accuracy �f = fNN−1N−1 − fNLM is shown in figure 1,
where the quantities f = fNN−1N−1 are the values of integral forL = N − 1
andM = N − 1. We see that the convergence series with respect to α = 0 is
rapid.

The results of calculations on a PENTIUM III 800 MHz computer (using
TURBO PASCAL 7.0 language) for various values of parameters of multicenter

35
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Figure 1. The convergence of series in equation (18) for the three-center EFG integral U 1−1
2.551−1,2.3411

for α = 1, 0,−1 in a.u.: ζ = 10.6, ζ ′ = 4.7, Rab = 3.2, θab = 1500, ϕab = 180◦, Rca = 0.6, θca = 54◦,
ϕca = 60◦.
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EF and EFG integrals are given in tables 1 and 2. As can be seen from these
tables, the accuracy of computer calculations obtained in the present algorithm
is satisfactory.

The computer time required for the calculation of multicenter EF and EFG
integrals are not given in the tables due to the fact that the comparison cannot
be made with the different computers used in the literature. It is seen from the
algorithm presented for multicenter EF and EFG integrals that our CPU times
are satisfactory. For instance, for two-center EF integrals with quantum sets n∗ =
2, l = 1, m = 1, ζ = 3.8, n′ = 2, l′ = 1, m′ = 0, ζ ′ = 4.1, i = 1 and Rca =
1.1, θab = 90◦, ϕca = 30◦, CPU time takes about 0.34 ms.
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